Building Enclosure Design
Moisture, Air, & Vapor Control

Presented to the
Society of American Military Engineers
2020

Presenter: David Joyce, EIT, BECxP, CxA+BE
615-490-7220 - David.Joyce@Terracon.com

Learning Objectives

✓ Understand how the building enclosure protects the interior environment and the health and safety of occupants.

✓ Understand the basics of building science and building enclosure design concepts.

✓ Understand types of Building Enclosure Performance Testing to reduce potential for indoor environmental risks and costly repairs to a building.
What is the Building Enclosure?

The primary function of the building enclosure is to separate the interior environment from the exterior environment to which it is exposed.

- Keep moisture out
- Keep conditioned air in
- Prevent water vapor condensation

Building Enclosure Components

- Foundations
- Concrete Floor Slabs
- Exterior Below Grade Walls
- Exterior Cladding
- Exterior Curtain walls and Storefronts
- Exterior Windows and Doors
- Sealant, Control Joints and Flashings
- Plaza Decks and Planters
- Roof Systems
- Skylights, etc.
- Air / Water / Vapor Barriers
- Fall Protection Systems
Building Enclosure Function

- Moisture, Air, Vapor Control
- Thermal Performance
- Light Control
- Indoor Comfort
- Security, Safety
- Fire Resistance
- Acoustical Performance
- Structural Integrity
- Maintainability/Sustainability
- Aesthetics

Consequences of Design Flaws & Construction Defects

- Uncontrolled Air and Water Intrusion
- Premature Deterioration of Building Components
- Structural Damage
- Biological Growth (Mold)
- Poor Indoor Air Quality
- Increased Energy Costs
- Decreased Worker Productivity
- Costly Investigations/Repairs
Building Enclosure Priorities

- Structural Design, Fireproofing, Accessibility
- Moisture
- Air
- Vapor
- Thermal
- Durability

Building Enclosure Principles

- Deflection (Canopies, Roof Overhangs, etc.)
- Drainage (Weeps, Sloping, etc.)
- Drying (Air Flow, Ventilation, Evaporation, etc.)
- Durability (Compatible Materials, Maintenance, Freeze – Thaw Cycles, etc.)
Basic Building Science

Thermal Transfer

- Radiation
- Conduction
- Convection

Heat transfers from hot to cold

Air Infiltration/Exfiltration

- Wind Effect
- Stack Effect
- Combustion and Ventilation

Air moves from higher to lower pressure
Basic Building Science

Water Transport

- Bulk Water (precipitation, groundwater, etc.)
- Capillary Action
- Water Vapor Diffusion

Moisture moves from wet to dry, higher vapor pressure to lower

The Ideal Wall

- Rainscreen Wall
- Control Layer Continuity – “Pencil Test”
- Exterior Insulation Out-Board of Air/Water Barrier
Performance Threats

- Transitions between building enclosure components or assemblies generally total less than 1% of the building enclosure area but can account for 90% of enclosure failures and leakage.
 - NIBS Annex U

- Uncontrolled air leakage in buildings increases the heating and cooling energy consumption by up to 40%.
 - "Commissioning the Air Barrier System" ASHRAE Journal

- Investigation of the impact of commercial building enclosure airtightness on HVAC energy use concludes that continuous air barrier systems can reduce air leakage by up to 83% and provide potential energy savings of greater than 40% for gas and 25% for electrical.
 - 2005 NIST Study

Typical Detail – Roof to Wall Transition
Typical Detail – At Grade Transition

- Cephus board
- Drainage gap
- Fully-adhered air/water/energy control layers
- Rigid insulation thermal control layers (thermoplastic polymers, expanded polystyrene, polyurethane, spray foam, semi-rigid foam)
- Transition membrane with an 80.00 mm overlap thickness
- Waterproofing control layers adhered to substrate
- Welded joints cast into slab
- Continuous steel shelf angle and stiff bracing
- Sealant
- Open drain holes at each vertical plate
- 1/4" (6 mm) dia. (not welded to underneath an drip edge)

Protection board under right installation

Typical Detail – Shelf Angle Transition

- Fully thermoset adhesive
- Lapped at base
- Carpet tape
- 1-0-150 mm gap
- 150 mm gap
- Water-based primer
- Water-based sealer
- Polyurethane
- Shelf edge supported by 3/4" (19 mm) diameter galvanized bolts
- Non-open gap
- Mortar bed top is B (mortar bed needs to be level on corners)
- Mortar bed needs to be level on edges

Traditional: no expansion
Expansion: poor performance
Mutes: cost good performance
Transitions

Thermal Continuity & Air Leakage
Thermal Continuity & Air Leakage
Performance Threats

- According to a study performed by the National Roofing Contractors Association, roofing failures are attributable to:
 - 50% to Poor Workmanship
 - 20% to Poor Design
 - 15% to Poor Maintenance
 - 10% to Material Failures

Indoor Air Quality

- Phenomena related to water intrusion, dampness and excess moisture are not only harmful to the health of a building’s occupants, but they also seriously affect the condition of the building structure, which may diminish the indoor air quality of the building.
 - WHO guidelines for indoor air quality: dampness and mold
 World Health Organization 2009
Mockups and Testing

Why?

- Quality control during construction
- Complements building commissioning process
- Holds Builders accountable
- Changes in building façade technology
- Savings on Forensic Assessment
Mockups

Test Methods - AAMA

- AAMA 501 – “The Big Picture”
- AAMA 502 – Fenestration Products
- AAMA 503 – Storefronts / Curtain Walls / Sloped Glazing
- AAMA 511 – Forensic Testing
- AAMA 501.2 – Hand-Held Spray Test
Test Methods - ASTM

- ASTM E 783 Field Air Infiltration
- ASTM E 1105 Field Water Penetration
- ASTM E 1186 Field Air Leakage Testing
- ASTM C 1153 Thermographic Imaging
- ASTM C 1521 Exterior Joint Sealant Adhesion Testing
- ASTM D4541 Air Barrier Adhesion Testing

Test Water Testing

ASTM E1105-00, Standard Test Method for Field Determination of Water Penetration of Installed Exterior Windows, Skylights, Doors, and Curtain Walls, by Uniform or Cyclic Static Air Pressure Difference
Field Air Leakage Testing

ASTM E1186-03, Standard Practices for Air Leakage Site Detection in Building Envelopes and Air Barrier Systems

• 4.2.7 Detection Liquid Air Testing (Locates voids in the Air Barrier); “Bubble Test”

Field Air Barrier Adhesion Testing

• ASTM D4541, Standard Test Method for Pull-Off Strength of Coatings Using Portable Adhesion Testers
• ASTM D4263, Standard Test Method for Indicating Moisture in Concrete by the Plastic Sheet Method
Field Testing – Sealant Pull Test

Field Roof Testing

Other Testing Methods

- Electronic Field Vector Mapping (EFVM)
- ANSI / SCTE FX-1 Deck Strength Roofing Fastener Pull Test
- Roof Uplift Testing (FM 1-52)

After Testing . . .

- Results are reported in a written report
- Construction continues
- EVERYONE is Happy!

- Remove and reinstall assemblies
- Adjust design or method of installation
- Consult with project waterproofing consultant or manufacturer’s technical representative
- Adjust performance criteria (only recommended if original criteria deemed to be not appropriate for product application)
- Retest after adjustments are made
Thank You for Your Time!

Questions?

David Joyce, EIT, BECxP, CxA+BE
615-490-7220 - David.Joyce@Terracon.com